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LE’lTER TO THE EDITOR 

Structural instability and the massless Aq4 theory 

Partha Ghose 
The British Council, Division of the British High Commission, 5 Shakespeare Sarani, 
Calcutta-700071, India 

Received 27 May 1983 

Abstract. It is shown that the massless Aip4  theory is structurally unstable, and quantum 
fluctuations cause symmetry breaking and the unfolding of the cusp catastrophe. 

It has recently been shown that quantum fluctuations can act as the driving mechanism 
for spontaneous symmetry breaking in the massless A q 4  theory (Ghose 1982, 1983). 
The purpose of this note is to comment on the topological significance of the result 
already established by detailed calculations (up to two loops). I shall argue that the 
massless A q 4  theory is ‘structurally unstable’ with a degenerate critical point at the 
origin which is removed by quantum fluctuations. The resultant effective potential is 
a universal unfolding of the critical point of A q 4 ;  it is the potential of the cusp 
catastrophe. 

We shall first define a few terms and state some fundamental and powerful results 
of local differential topology. The interested reader is referred to Poston and Stewart 
(1978) for details. A function f :  R + R is said to have a critical point at U if Dflu = 0 
where D denotes the derivative (defined as the best approximating linear map at U). 
The critical point U is said to be non-degenerate if D’f is non-singular. Functions 
which have only non-degenerate critical points are called Morse functions. Two 
functions f and g are said to be equivalent around the origin 0 if there exists a local 
diffeomorphism (a smooth reversible change of coordinates) y : R -* R around 0 and 
a constant y such that g ( x )  = f ( y ( x ) )  + y  around 0; the shear term y adjusts the value 
of the function at 0. A function f is said to be structurally stable if under sufficiently 
small and smooth perturbations p, the functions f and f + p  are equivalent; in other 
words, if the critical points of f and ( f + p )  are of the same type. Now, there is a 
powerful result which says only Morse functions are structurally stable (Poston and 
Stewart 1978). For example, the function x 2  is structurally stable because no perturba- 
tion, if it is sufficiently small, would change its behaviour. For example x’ +  EX ( E  

an arbitrary small constant) can be written as u 2  - E * with U = x + E  ; only the Morse 
critical point is shifted from 0 to - E .  On the other hand, the functions x 3  and x4  are 
non-Morse and unstable because there are polynomials arbitrarily close to them which 
are not of the same type. For example, the function ( x 4 + & x 2 )  has one maximum at 
x = 0 and two minima at x = *( - % E ) ’ ”  for arbitrarily small but negative E ( E  < 0), 
whereas the function x 4  has a single minimum at x = 0. 

In addition to structurally stable single functions one needs also to consider smooth 
families of functions (which may include individual functions with degenerate critical 
points) parametrised by control parameters (a ,  6 , .  . .). Two r-parameter families of 
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functions f ,  g : R" x R '+  R are equivalent if there exist in the neighbourhood of the 
origin (i) a diffeomorphism e :RI + R', (ii) a smooth map y : R " x R ' + R " such that 
for each s ER'  the map y S ( x )  = y ( x ,  s )  is a diffeomorphism, and (iii) a smooth map 
y : R ' + R  such that g ( x , s ) = f ( y , ( x ) , e ( s ) ) + y ( s )  for all ( x , s ) E R "  XR' in that neigh- 
bourhood. If f : R " x R ' + R  is equivalent to any family f + p : R " x R ' + R  for a 
sufficiently small family p : R " x R' + R of perturbations, then f is structurally stable. 
An example of a structurally stable family is the cusp catastrophe V ( x )  = x 4  + ax2 + bx. 
(The cubic and constant terms can always be eliminated by a suitable choice of the 
origin.) V ( x )  is called the universal unfolding of the critical point of x 4  which has 
three coincidental critical points that separate under a small perturbation. This is a 
very powerful result. It is universal in the following sense: any smooth function of x '  
and parameters (a' ,  6 ' ;  c, d ,  . . .) which has the form k ~ ' ~  + (higher-order terms in x ' )  
(with k -0) when a' = b' = c = d = . . . = 0 can always be converted into the form V ( x )  
by a suitable smooth coordinate substitution x = x ( x ' ;  a ' ,  b', c ,  d ,  . . .), a = 
a(a' ,  b', c ,  d ,  . . .), b = b ( a ' ,  b' ,  c, d ,  . . .) valid in some neighbourhood of (0; 0,O. . .). 
In other words, V ( x )  captures completely the effects of all possible unfoldings and 
all possible perturbations; it gives all the types near anything equivalent to x 4  and 
the geometry of how they develop under a continuously varying perturbation. 

Our examples have been polynomials, but this is no real restriction. Any 
sufficiently smooth function of one variable can be expanded as a formal Taylor series. 
If its critical point is degenerate (i.e. the second derivative vanishes) and its first 
non-vanishing derivative is the n th-order derivative (with n finite), then the critical 
point has ( n  -2)-fold degeneracy and it requires (n  - 2 )  unfolding (or control) 
parameters. The critical point is said to be of codimension ( n  - 2). For example, the 
critical point of x 4  is of codimension 2 and requires two unfolding parameters. The 
behaviour of the rest of the terms of the series or whether the series converges does not 
matter because we are concerned with what happens arbitrarily close to the origin. 
Consider, for example, the function x4+ax5;  the additional critical point occurs at 
x = - ( 4 / 5 a )  which is arbitrarily far from the origin for arbitrarily small C Y .  In Zeeman's 
well known words, the tail (of the Taylor series) cannot wag the dog! There is a powerful 
result here : an algorithm exists for deciding whether or not the Taylor series of a function 
f :  R" + R uptoorderk (calledthek- jetjkf)issufficient todeterminethebehaviourofthe 
function close to theorigin. For asingle variable the result is elementary. (For details, see 
Poston and Stewart (1978).) 

In this connection a recent paper by Miller (1982) is worth drawing attention to. 
He argues that no perturbative calculation can discover the true minima of a potential. 
It is well known that there are smooth functions which are not well approximated 
by their formal expansions. For example, f ( x )  = exp(-l/x2) for x # 0, f ( x )  = 0 
for x = O  is of infinite codimension and has the well defined expansion 
f ( x )  = f ( 0 )  +f'(O)x + $f"(0)x2 + 1 - = 0 + 0 + 0 + * which coincides with the Taylor 
expansion of f ( x )  = 0; however, the two functions have only one common point ( x  = 0). 
To look for isomorphisms between functions and Taylor expansions is therefore a 
red herring. Fortunately, in order to study the effect of small perturbations (e.g. 
quantum fluctuations) on a function near the origin one need only look at the critical 
points of the function and see if they are structurally stable or unstable but capable 
of unfolding into structurally stable families with a finite number of unfolding para- 
meters (i.e. of finite codimension). 

The above considerations tell us that the massless A q 4  theory is structurally 
unstable, and I shall show in this paper that the perturbatively reliable asymmetric 
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solution found earlier by explicit computation (up to two loops) has structural stability 
in the presence of an external c-number source. N o  further (small) perturbations 
(e.g. higher loops) can alter this qualitative topological character : the universal 
unfolding of the cusp catastrophe occurs already in the loop approximation. The 
worst thing that can happen topologically to cp: near the origin cpc = 0 already happens 
in the loop approximation: cpg and higher-order terms can be rigorously ignored near 

It is also clear now why Coleman and Weinberg (1973) missed this stable asym- 
metric solution. Their renormalisation condition a2 V/acpf lo = 0 forces the critical point 
of q: to remain degenerate : the unfolding is prevented from occurring. No wonder 
then that the minimum that appeared in their one-loop calculation is false! The lesson 
is that not all renormalisation conditions are topologically equivalent and one must 
bear this in mind in choosing them. 

The effective potential (see Coleman and Weinberg (1973)) of the massless Acp4 
theory coupled to an external c-number source J is given by 

(0, = 0. 

V(cp,, J )  = (A + c ) ( P : / ~ !  +&: -Jcp,, (1) 
where B and C are counterterms which can be determined by imposing the 
renormalisation conditions (Ghose 1983) 

d4V/dcp: 1~ = A ,  (2) 

d2 V / d ~ f  Io =f(h)b, (3) 

where M is an arbitrary renormalisation mass, f(h) is any function of the loop expansion 
parameter h that satisfies f(0) = 0, f( 1) = 1, guaranteeing a massless theory in the tree 
approximation, and b is to be determined by requiring the broken symmetric solution 
to be perturbatively reliable. Notice that there is no symmetry in the theory which 
requires b to vanish except scale invariance which is afflicted by anomalies. One finds 
in the one-loop approximation+ 

The broken symmetric solution (cp) obtained by requiring 

is given by 

Aln((cp)2/M2) = - (64r2/hA)(bA + f ( A ) b / ( ~ ) ~ )  +?A. ( 6 )  
It is clear that (cp) vanishes in the tree approximation ( h  = 0), guaranteeing a symmetric 
massless theory in that approximation, and the asymmetric solution is reliable ( /A I << 
1, IA In cp,/MI << 1) provided (remembering f(1) = 1) 

b = - % A ( ~ ) ~ + o ( A ~ ) .  (7 1 
The O(A 2, term can be fixed by requiring f(h)b to be renormalisation group invariant 

+ The last-but-one term would be absent if one were to use the renormalisation condition a* V/a(pa lo = 0 
used by Coleman and Weinberg (1973), which, as remarked earlier, would force the critical point at cpc = 0 
to remain degenerate and prevent the unfolding from occurring. 



L464 Letter to the Editor 

(Ghose 1983). Equations (3) and (7) show that the critical point is now non-degen- 
erate : the minimum of the classical potential at cp, = 0 has been turned into a maximum 
and there are two new minima at f (cp). 

Now consider the renormalisation group equation 

(MaIaM + palah + ycp,a/acp,)V = 0. (8) 

Following Coleman and Weinberg (1973), consider the dimensionless quantity V‘4’ = 
a4 Vlacp: and define the dimensionless variables 

t = In cp,/M, 6 = P l ( 1  - Y ) ,  v = Y / U -  Y) .  (9) 

(-alar +pa/aA + 47)  P4’( t ,  A )  = 0. (10) 

p = 3hA2/16.rr2, Y =o ,  (11)  

(-a/at +pa/aA j P4)( t ,  A )  = 0. 

Then V‘4’ satisfies the equation 

In the one-loop approximation, 

and so (10) becomes 

(12) 
Define A “( t ,  A ) by 

dA“/dt = p ( A ” )  = 3hAtt2/16.rr2 

with A”(0, A )  = A .  Then 

Thus A drops out near the origin of classical field space and is replaced by (cp). This 
is called ‘dimensional transmutation ’, 

Now define the auxiliary quantity 

A 
1 - (3hA/32.rr2)(ln (pZ/M2--?)’ 

A ’ =  

In terms of A ‘  the renormalisation group ‘improved’ effective potential can be written 
down as 

It is clear from (17) that the one-loop approximation is reproduced in its expected 
domain of validity, namely IA 1 << 1,  IA In cpc/MI << 1 ; equation (16) is, however, valid 
over the much wider range -00 < t < 00 but only to lowest order in h. 

Noticing that 
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Thus to lowest order in A’, 

Using this result in (16), we get 

V = (A’/4!)cp: -&(A’>(cpP>2cp~ -Jcp,. 

Notice that 

V((cp), J = 0) = - ((A’)/4!)(cp)4 < O .  (22) 

Since V(0,O) = 0, ( c p )  is an absolute minimum. 

cp;  = (A’/3!)1’4cpc. 

Now define a new field variable 

The effective potential (21) can be rewritten in terms of cp: as 

(24) 1 r4 1 V(cp5,J’) = a c p c  -Zacp:2 -J’cpL 

In differentiating V with respect to c p s  both J’  and a can be treated as constants in 
the neighbourhood of the origin (t + -CO). Therefore (24), being in the standard form 
of a ‘cusp catastrophic’ potential, is a structurally stable universal unfolding with J‘ 
and a as unfolding parameters or control variables (J‘ being the ‘normal factor’ and 
a the ‘splitting factor’) and cps the state variable. The bifurcation set is given by 

27J” = 4a3. (26) 

Equation (24) has been arrived at via various approximations. Nevertheless, it has 
universality in the following sense: any smooth function of cpe and parameters 
J”, a’;  6, c, . . , which has the form (k + 0) + (higher-order terms in c p : )  when 
J” = a’ = 6 = c = - = 0 can be converted into the form (24) by a coordinate substi- 
tution 

cps =cpA(cp:;J”,a’,6,c , . . .  ), J ’  = J’(J”, a’ ,  6 ,  c,  . . .), a = a(J” ,  a ‘ ,  6 ,  c, . . .), 
(27) 

valid in some neighbourhood of (0 ;  O , O , ,  . .). Therefore, given that the critical point 
strucfure of (24) is of physical interest, catastrophe theory tells us that we would have 
the same critical point structure (after a coordinate change (26)) even if cps6  and higher 
terms were included, for small values of c p ;  and the parameters a and J ’ .  

The usual massive Acp4 theory has an additional parameter A,  and therefore cannot 
be thrown into the standard cusp catastrophic form (24). It is ‘dimensional transmuta- 
tion’ (replacement of A by ( c p ) )  which allows the cusp catastrophe to occur in the case 
of the massless Acp4 theory. 

I am grateful to D R J Chillingworth for a critical reading of the original manuscript 
and for suggesting a number of improvements in presentation, particularly in the 
section on structural stability. The deficiencies that remain are entirely mine. I am also 
grateful to Mr Robin Twite, Regional Education Adviser, The British Council, Cal- 
cutta, for constant encouragement. 
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